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Abstract
A number of authors have proposed stochastic versions of the Schrödinger
equation, either as effective evolution equations for open quantum systems or as
alternative theories with an intrinsic collapse mechanism. Here we discuss two
directions for the generalization of these equations. First, we study a general
class of norm preserving stochastic evolution equations, and show that even
after making several specializations there is an infinity of possible stochastic
Schrödinger equations for which state vector collapse is provable. Second,
we explore the problem of formulating a relativistic stochastic Schrödinger
equation, using a manifestly covariant equation for a quantum field system
based on the interaction picture of Tomonaga and Schwinger. The stochastic
noise term in this equation can couple to any local scalar density that commutes
with the interaction energy density, and leads to collapse onto spatially localized
eigenstates. However, as found in a similar model by Pearle, the equation
predicts an infinite rate of energy nonconservation proportional to δ3(�0), arising
from the local double commutator in the drift term.

PACS numbers: 0530, 0365P, 0365T, 0510G

1. Introduction

The measurement problem is widely perceived as the greatest difficulty in the interpretation
of quantum mechanics: how, without invoking a separate realm of classical measuring
devices, can one rule out superpositions of macroscopically distinct states, as in the famous
Schrödinger’s cat paradox? To answer this question, a number of authors have suggested
modifying the usual Schrödinger equation so as to eliminate such superpositions at large
length scales, while retaining the standard quantum results for microscopic systems. The
result is a modified Schrödinger equation containing extra terms, including stochastic terms
which reproduce the probabilities of measurements [1–7].

In a parallel development, other researchers have derived effective equations to describe
systems evolving in contact with an external environment. These effective equations also
take the form of stochastic Schrödinger equations, of a form very similar to those posited in
response to the measurement problem [8–14].
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One example of such a modified equation is the quantum state diffusion (QSD) equation
of Gisin and Percival [12], which has the form

|dψ〉 = −iĤ |ψ〉 dt +
∑
k

(〈L̂†
k〉L̂k − 1

2 L̂
†
kL̂k − 1

2 |〈L̂k〉|2)|ψ〉 dt +
∑
k

(L̂k − 〈L̂k〉)|ψ〉 dξk.

(1)

Here the Lindblad operators L̂k [15] represent the effects of the environment, Ĥ is the
Hamiltonian and the stochastic differentials dξk represent independent complex Wiener
processes with vanishing ensemble averages or means (i.e. M[dξk] = 0), that obey the Itô
stochastic calculus

dξ ∗
j dξk = dt δjk dξj dξk = dt ujk dt dξk = 0. (2)

Equations (1) and (2) define an Itô stochastic differential equation; in manipulations using the
Itô differential d, one must use the modified chain rule d(AB) = dAB + AdB + dA dB. (In
the ‘standard form’ of the QSD equation given by Gisin and Percival, the symmetric complex
matrixujk is zero. However, Wiseman and Diósi [16] have recently shown that the most general
Itô stochastic unravelling of the Lindblad evolution has ujk nonzero, with the matrix norm ‖u‖
bounded by unity. Hence we will keep ujk nonzero in setting up the general framework for our
discussion, only dropping it later on.) While the dynamics of |ψ〉 can be extremely complex,
there is a tendency for the state to localize onto eigenstates of the Lindblad operators L̂k . Of
course, the competing influences of different L̂k , or of the Hamiltonian Ĥ , can prevent this
localization from taking place. Note also that equation (1) is nonlinear in |ψ〉; this will in
general be necessary for such an equation to preserve the norm of the state.

While we have presented this as an effective equation, arising due to the effects of an
external environment, one can postulate an exactly similar equation in which the noise is
considered fundamental. Percival [17] has proposed such an equation with localization onto
energy eigenstates, which he calls primary state diffusion (or PSD). Other such equations have
been proposed by Pearle [1], Ghirardi et al [3,4], Diósi [5] and Hughston [7]. A survey of their
properties has recently been given by Adler and Horwitz [18], who give a detailed discussion
of the conditions for the dynamics of equation (1) to lead to state vector collapse.

Our aim in this paper is twofold. First, we examine the extent to which a stochastic
dynamics such as equation (1) can be kept in its most general form, subject to the requirement
that it should still lead to state vector collapse. This forms the subject matter of section 2,
where we show that there is an infinite parameter family of stochastic equations for which state
vector collapse is provable.

Our second aim is to explore the well known problem that all equations with the structure
of equation (1) are nonrelativistic. They are designed to mimic measurement, and they almost
all contain a distinguished frame which takes the role of the rest frame of the measuring device.
Since in standard QM measurements take effect instantaneously on the state vector of the entire
system—ultimately, on the entire universe, it has been very difficult to find a covariant theory
of measurement. In section 3 we study a local generalization of equation (1) which can be
written in manifestly covariant form, based on the ‘many-fingered time’ Tomonaga–Schwinger
generalization of the Schrödinger equation. (For previous related approaches to this problem,
see e.g. [19–23].) The generalized equation, like its nonrelativistic counterparts, causes the
values of certain quantities (such as the centre of mass of a measuring meter) to localize.
However, there are difficulties with energy conservation arising from the local structure of the
stochastic terms.
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2. Generalized stochastic equations

2.1. General framework

We begin by giving a general framework for the basic QSD equation of equation (1). Consider
the stochastic state evolution

|dψ〉 = α̂|ψ〉 dt +
∑
k

β̂k|ψ〉 dξk (3)

with dξk independent complex Wiener processes as in equations (1) and (2), and with α̂ and β̂k
the operator coefficients of the drift and stochastic terms respectively, which can also have an
explicit dependence on the state |ψ〉. The condition for the norm of the state to be preserved is

0 = d〈ψ |ψ〉 = 〈dψ |ψ〉 + 〈ψ |dψ〉 + 〈dψ |dψ〉. (4)

Substituting equation (3) and its adjoint, and using equation (2) to simplify the quadratic terms
in the Itô differentials, this becomes

0 = dt〈ψ |α̂ + α̂† +
∑
k

β̂
†
k β̂k|ψ〉 +

∑
k

[dξ ∗
k 〈ψ |β̂†

k |ψ〉 + dξk〈ψ |β̂k|ψ〉]. (5)

Since dξk and dξ ∗
k are independent, equation (5) requires that the coefficients of dt , dξk and

dξ ∗
k vanish independently, giving the conditions

0 = 〈ψ |
(
α̂ + α̂† +

∑
k

β̂
†
k β̂k

)
|ψ〉

0 = 〈ψ |β̂k|ψ〉 all k.

(6)

Letting L̂k be a set of general (not necessarily self-adjoint) operators, and Ĥ = Ĥ † and K̂ = K̂†

be arbitrary self-adjoint operators, the general solution to the conditions of equation (6) takes
the form

β̂k = L̂k − 〈ψ |L̂k|ψ〉
α̂ = −iĤ + K̂ − 〈ψ |K̂|ψ〉 − 1

2

∑
k

β̂
†
k β̂k

(7)

with the operators K̂ and L̂k still allowed to have an explicit dependence on the state vector
|ψ〉. It is convenient for what follows to introduce the definitions

〈Ô〉 ≡ 〈ψ |Ô|ψ〉
�Ô ≡ Ô − 〈Ô〉 (8)

where Ô is an arbitrary operator. Then equation (7) can be written in somewhat more compact
form as

β̂k = �L̂k

α̂ = −iĤ + �K̂ − 1
2

∑
k

β̂
†
k β̂k.

(9)

Equations (3) and (7)–(9) give the general form of a norm-preserving stochastic extension of
the Schrödinger equation. Equation (1) clearly has this general form, with the specific choice
K̂ = 1

2

∑
k(〈L̂†

k〉L̂k − L̂
†
k〈L̂k〉), for which 〈K̂〉 = 0, so �K̂ = K̂ . Usually, in applications of

the QSD equation it is assumed that the Lindblads have no dependence on the state |ψ〉, but we
will find it useful to keep open the possibility that they do have a nontrivial state dependence.

To analyse convergence properties implied by this equation, we shall need formulae for

the evolution of the expectation 〈Ô〉 and the variance V [Ô] ≡ 〈(�Ô)2〉 = 〈Ô2〉 − 〈Ô〉2
of
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a general operator Ô. Using equation (2) and the Itô extension of the chain rule, together
with equation (3) and its adjoint, and (in the calculation of dV ) imposing the normalization
constraints of equation (9), we find after some algebra the results

d〈Ô〉 =
〈

dÔ

dt
+ α̂†Ô + Ôα̂ +

∑
k

β̂
†
k Ôβ̂k

〉
dt +

∑
k

[dξk〈Ôβ̂k〉 + dξ ∗
k 〈β̂†

k Ô〉]

dV [Ô] =
[〈
�Ô

dÔ

dt
+

dÔ

dt
�Ô

〉
+

〈
α̂†(�Ô)2 + (�Ô)2α̂ +

∑
k

β̂
†
k (�Ô)

2β̂k

〉

−2
∑
k

〈β̂†
k�Ô〉〈�Ôβ̂k〉 − 2Re

( ∑
kl

〈�Ôβ̂k〉〈�Ôβ̂l〉ukl
)]

dt

+
∑
k

[dξk〈(�Ô)2β̂k〉 + dξ ∗
k 〈β̂†

k (�Ô)
2〉].

(10)

In applying equation (10), we shall be able to take its mean over the Itô process. Since the
stochastic expectation or Itô process mean M[ ] obeys

M[dξkS] = M[dξ ∗
k S] = 0 all k (11)

for a general Hilbert space scalar S, the terms in equation (10) involving dξk and dξ ∗
k drop out

in the mean, giving

M[d〈Ô〉] = M

[〈
dÔ

dt
+ α̂†Ô + Ôα̂ +

∑
k

β̂
†
k Ôβ̂k

〉]
dt

M[dV [Ô]] = M

[〈
�Ô

dÔ

dt
+

dÔ

dt
�Ô

〉
+

〈
α̂†(�Ô)2 + (�Ô)2α̂ +

∑
k

β̂
†
k (�Ô)

2β̂k

〉

−2
∑
k

〈β̂†
k�Ô〉〈�Ôβ̂k〉 − 2Re

( ∑
kl

〈�Ôβ̂k〉〈�Ôβ̂l〉ukl
)]

dt.

(12)

Clearly, these equation take the same form if Ô is replaced everywhere by any function F̂ [Ô],
since this simply defines a new operator F̂ that replaces the dummy operator Ô. In the next
two sections we shall argue that for the evolution given by equation (3) to converge to an
eigenstate of Ô we must have M[dV [Ô]] � 0, with equality only for 〈(�Ô)2〉 = 0, and shall
demonstrate this for a particular special class of equations.

2.2. Specialization

We shall now introduce some simplifying specializations, which as we shall see, still leave an
infinite parameter class of stochastic Schrödinger equations, for which state vector reduction
to eigenstates of the operator Ô is provable. First of all, let us restrict ourselves to the case in
which Ô is a self-adjoint observable, which we assume to have no explicit time dependence,
so that Ô = Ô†, dÔ/dt = 0. Secondly, we now take the complex matrix ujk of equation (2) to
be zero, and we specialize the choice of the operators α̂ and β̂k , which satisfy the normalization
constraints of equation (9), as follows:

(i) We take the operator K̂ to be zero, so that the constraint of equation (6) is satisfied as an
operator relation

α̂ + α̂† +
∑
k

β̂
†
k β̂k = 0 (13)

which, as in equation (9), implies that

α̂ = −iĤ − 1
2

∑
k

β̂
†
k β̂k. (14)
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(ii) We take Ĥ to be an operator that commutes with Ô, and take all of the L̂k to be functions
solely of the operator Ô, so that they also commute with Ô:

[Ĥ , Ô] = 0 L̂k ≡ L̂k[Ô] ⇒ [L̂k, Ô] = 0. (15)

Together with equations (7) and (13), these specializations imply that α̂ and β̂k all commute
with Ô, as well as with any function F̂ [Ô] solely of the operator Ô,

[α̂, Ô] = 0 [β̂k, Ô] = 0

[α̂, F̂ [Ô]] = 0 [β̂k, F̂ [Ô]] = 0.
(16)

With these specializations, equations (12) for the time derivatives of the stochastic mean
of the quantum expectation of a function F̂ [Ô], and of the stochastic mean of the variance
of Ô, simplify dramatically. Since α̂ and β̂k commute with Ô, as well as with any function
F̂ [Ô], we have〈
α̂†(�Ô)2 + (�Ô)2α̂ +

∑
k

β̂
†
k (�Ô)

2β̂k

〉
=

〈
(�Ô)2

[
α̂ + α̂† +

∑
k

β̂
†
k β̂k

]〉
= 0〈

α̂†F̂ [Ô] + F̂ [Ô]α̂ +
∑
k

β̂
†
k F̂ [Ô]β̂k

〉
=

〈
F̂ [Ô]

[
α̂ + α̂† +

∑
k

β̂
†
k β̂k

]〉
= 0

(17)

where we have used the operator constraint of equation (13). Also, since 〈�Ô〉 = 0, we have

〈�Ôβ̂k〉 = 〈�Ô(L̂k − 〈L̂k〉)〉 = 〈�ÔL̂k〉 (18)

and when Ô is self-adjoint, we have 〈β̂†
k�Ô〉 = 〈�Ôβ̂k〉∗. Thus, what remains of equation (12)

is

M[d〈F̂ [Ô]〉] = 0

M[dV [Ô]] = −2M

[ ∑
k

|〈�ÔL̂k[Ô]〉|2
]

dt
(19)

with F̂ [Ô] any function solely of the operator Ô.

2.3. State vector reduction

We shall now show that the stochastic dynamics, as specialized in the preceding subsection,
implies state vector reduction to eigenstates of Ô (assumed nondegenerate), with probabilities
given by the Born rule in terms of the initial wavefunction. We shall need one further
assumption beyond those introduced above, namely that the scalar valued function f of Ô
defined by

f [Ô] ≡
∑
k

|〈�ÔL̂k[Ô]〉|2 (20)

vanishes if and only if 〈(�Ô)2〉 vanishes. One simple way to achieve this is to take L̂k[Ô] to
have the form

L̂k[Ô] =
N∑
n=0

c
(n)
k (�Ô)2n+1 (21a)

with c(0)k > 0 for at least one value of k; note that here we are using the freedom, remarked on
above, to allow the Lindblads to have an explicit dependence on the state vector. This implies
that for this value of k

〈�ÔL̂k[Ô]〉 =
N∑
n=0

c
(n)
k 〈[(�Ô)2]n+1〉 > c

(0)
k 〈(�Ô)2〉 (21b)
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and so the vanishing of f [Ô] implies the vanishing of 〈(�Ô)2〉. This still leaves an infinite
parameter freedom in the construction of the L̂k . A second specific example of a f [Ô] with
the needed property is given in section 3.3 below.

A general condition for f [Ô] to have the needed property can be formulated by rewriting
equation (20) as

f [Ô] = 〈ψ |�ÔP̂ [Ô]�Ô|ψ〉 P̂ [Ô] ≡
∑
k

L̂k[Ô]|ψ〉〈ψ |L̂†
k[Ô] (22)

with P̂ [Ô] by construction a positive semidefinite operator. If the Lindblads L̂k were all unity,
P̂ would be proportional to the projector |ψ〉〈ψ |, and since |ψ〉 is orthogonal to the state
�Ô|ψ〉, one would have f [Ô] ≡ 0. In order for f [Ô] to have the needed property, it is
necessary for the Lindblads to introduce enough distortion of the projector |ψ〉〈ψ | for P̂ [Ô]
to make a strictly positive contribution to equation (22), in which case the vanishing of f [Ô]
requires the vanishing of the state �Ô|ψ〉, or equivalently, the vanishing of 〈(�Ô)2〉. This
formulation of the condition on f [Ô] suggests that in the generic case, it is natural for it to
have the needed property.

We can now proceed with a convergence proof, following the presentation given by Adler
and Horwitz [18] (see also [1, 4, 7]). Integrating the second line of equation (19) with respect
to t , we get

M[V [Ô]](t) = M[V [Ô]](0)− 2
∫ t

0
M[f [Ô]](t) dt. (23)

Since both V and f are non-negative, equation (23) implies that the integrand M[f [Ô]](t)
must vanish as t → ∞, since otherwise the right-hand side of equation (23) would become
negative at large times. This in turn implies that f [Ô](t) vanishes as t → ∞ except on a
set of probability measure zero, which by the assumption introduced following equation (20)
implies that the variance V [Ô] = 〈(�Ô)2〉 vanishes as t → ∞ except on a set of probability
measure zero. Thus, when Ô is nondegenerate, the state vector reduces to a pure state. Now
integrating the first line of equation (19) with respect to t , taking the function F̂ [Ô] to be a
projector !" on the "th eigenstate of Ô, we get

M[〈!"(∞)〉] = M[〈!"(0)〉] = 〈!"(0)〉. (24)

The left-hand side of equation (24) is just the probability that the stochastic process settles
at t = ∞ on the "th eigenstate of Ô, while the right-hand side is the probability amplitude
squared for the "th eigenstate to occur in the initial state vector |ψ〉. Thus, as first proposed by
Pearle [1], the first line of equation (19)—which states that the stochastic process for 〈F̂ [Ô]〉 is
a martingale—implies that the state vector reduction implied by the second line of equation (19)
obeys the Born probability rule.

To compare what we have done to the analyses of Hughston and of Adler and
Horwitz [7, 18], those authors consider the energy-driven case in which the operator Ô = Ĥ ,
and in which one (at least) of the�L̂k is simply taken as�Ĥ , corresponding to the case where
the sum in equation (21) consists only of the n = 0 term. Note that in this case, it makes
no difference whether we take L̂k = Ĥ or we take L̂k = �Ĥ , since both give �L̂k = �Ĥ .
When n > 0 terms are present in L̂k , this distinction is important, and plays a role in our
example showing that there are more general stochastic equations that still allow one to prove
state vector reduction.

3. Relativistic stochastic equations

Because equations (1) and (3) involve a universal time variable t at all spatial points, they
are clearly nonrelativistic. This is evident from equation (2), which states that the same Itô



Generalized stochastic Schrödinger equations for state vector collapse 4803

stochastic differential is present everywhere in space, giving Wiener processes at spacelike
separated points that are totally correlated. In this section we explore the possibility of
extending equation (1) into an equation with local Wiener processes, which can then be
generalized to a manifestly covariant form. We shall henceforth work with a relativistic
quantum field theory, rather than with a nonrelativistic quantum mechanical system, and thus
will seek to modify the Schrödinger equation for this field system to a stochastic Schrödinger
equation analogous to equation (1), in a manner that preserves relativistic covariance. For
closely related work, from which our analysis differs in some details, see Pearle [19], Ghirardi
et al [20] and Diósi [23].

3.1. The interaction picture

Suppose we choose a particular Lorentz frame with coordinates t, �x, and define a state vector
|ψ〉 for a field system at time t . This state evolves to a new state at time t + dt according to
the Schrödinger equation

|dψ(t)〉 = −iĤ |ψ(t)〉 dt. (25)

The Hamiltonian Ĥ is the integral of a Hamiltonian density Ĥ (�x) over a constant-time surface,

Ĥ =
∫

d3 �x Ĥ (�x). (26)

Neither the Hamiltonian Ĥ nor the Hamiltonian density Ĥ (�x) are Lorentz invariant, and the
Hamiltonian densities at points �x and �y do not commute:

[Ĥ (�x), Ĥ (�y)] = −i �∇�xδ3(�x − �y) · ( �̂P(�x) + �̂P(�y)) (27)

with �̂P(�x) the momentum density. These facts make it difficult to directly extend equation (25)
into a stochastic Schrödinger equation in a manner consistent with Lorentz invariance.

As a first step in avoiding these problems, let us switch to the interaction picture. (Our use
of this is heuristic and ignores mathematical issues of the existence of the interaction picture,
as discussed e.g. in [24].) We write the Hamiltonian density Ĥ (�x) as a sum

Ĥ (�x) = Ĥ0(�x) + Ĥint(�x) (28)

where Ĥ0(�x) is the free-field Hamiltonian density and Ĥint(�x) is the interaction Hamiltonian
density. Unlike Ĥ (�x) as a whole, Ĥint(�x) is a relativistic invariant in theories without derivative
couplings, and it commutes with itself at different points,

[Ĥint(�x), Ĥint(�y)] = 0. (29)

Let Û be the unitary time evolution operator for the free-field Hamiltonian,

Û = exp{iĤ0t}. (30)

If |ψS(t)〉 is the state at time t in the Schrödinger picture, the state in the interaction picture
is |ψ(t)〉 = Û |ψS(t)〉. We similarly replace the Schrödinger picture field operators (e.g.,
φ̂, π̂ ) with interaction picture operators (e.g., φ̂(t) = Û φ̂Û †, π̂(t) = Û π̂Û †). If we express
the interaction Hamiltonian density Ĥint(�x), which is a function of the field operators at the
point �x, as a function of the interaction picture field operators, the state then obeys the simple
evolution equation

|dψ(t)〉 = −iĤint|ψ(t)〉 dt (31)

where

Ĥint =
∫

d3 �x Ĥint(�x). (32)
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One must now remember that operators that were time independent in the Schrödinger picture
acquire a time dependence governed by the free Hamiltonian Ĥ0.

So far this discussion has been restricted to constant-time surfaces in a single Lorentz
frame, in which a fixed time step dt is taken simultaneously at all spatial points �x, and so
equation (31) is still not Lorentz invariant. We now follow Tomonaga and Schwinger [25,26]
(see also Matthews [27], Kroll [28], and Dyson [29]) in generalizing equation (32) into a local
evolution equation. Consider a spacelike surface σ with local coordinates �x, on which the state
of the underlying quantum fields is described by a Fock space state vector |ψ(σ)〉. Instead
of advancing the whole spacelike surface σ , we move the surface forward (i.e. in the normal
direction) by an increment dt (�x) only in the vicinity of a single point �x, distorting the surface
σ to a new spacelike surface σ ′. Under this evolution, the state vector |ψ〉 evolves to a state
vector |ψ〉 + d�x |ψ〉, with the change in the state vector given by

d�x |ψ〉 = −iĤint(�x)|ψ〉 dt (�x). (33)

The change in the state vector resulting from advancing the entire surface is then

|dψ〉 =
∫

d3 �x d�x |ψ〉. (34)

Since the Ĥint(�x) at all points commute, the order in which the spacelike surface is advanced is
immaterial and so the right-hand side of equation (34) can be unambiguously integrated, which
for constant-time surfaces with dt (�x) ≡ dt recovers the original interaction picture Schrödinger
equation of (31), (32). From the viewpoint of constructing a stochastic generalization, the local
form of the interaction picture evolution equation given in equation (33) has three advantages:
it is readily put into a manifestly covariant form, it involves only the Lorentz scalar operator
density Ĥint(�x) and this operator commutes with itself (and with other easily constructed scalar
densities) at spacelike separations.

3.2. The local norm-preserving stochastic equation

Let us now replace the local unitary evolution equation of equation (33) with a new equation

d�x |ψ〉 = α̂(�x)|ψ〉 dt (�x) + β̂(�x)|ψ〉 dξ(�x) (35)

in which we take the coefficient functions α̂(�x), β̂(�x) and α̂(�y), β̂(�y) to mutually commute for
all �x, �y, so that no noncommutativity problems are encountered when we compound evolutions
for different values of �x. Here dξ(�x) is a complex stochastic differential variable defined at
each point �x, which has zero stochastic mean (i.e. M[dξ(�x)] = 0), and which obeys the local
Itô calculus

dξ ∗(�x) dξ(�y) = δ3(�x − �y) dt (�x) dξ(�x) dξ(�y) = dt (�x) dξ(�y) = 0. (36)

The spatially integrated form corresponding to equation (35) is

|dψ〉 =
∫

d3 �x d�x |ψ〉 =
∫

d3 �x [α̂(�x)|ψ〉 dt (�x) + β̂(�x)|ψ〉 dξ(�x)]. (37)

In analogy with our discussion of section 2.1, we can now determine the conditions on the
coefficient functions α̂(�x) and β̂(�x) for equation (37) to preserve the norm of the state,

d〈ψ |ψ〉 = 〈dψ |ψ〉 + 〈ψ |dψ〉 + 〈dψ |dψ〉
=

∫
d3 �x 〈ψ |[α̂(�x) + α̂(�x)† + β̂(�x)†β̂(�x)]|ψ〉 dt (�x)

+
∫

d3 �x [〈ψ |β̂(�x)†|ψ〉dξ ∗(�x) + 〈ψ |β̂(�x)|ψ〉dξ(�x)]. (38)
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Since dξ ∗(�x), dξ(�x) and dt (�x) are linearly independent, the normalization of the state
〈ψ |ψ〉 = 1 is preserved if and only if for all �x we impose the conditions

0 = 〈ψ |[α̂(�x) + α̂(�x)† + β̂(�x)†β̂(�x)]|ψ〉
0 = 〈ψ |β̂(�x)|ψ〉. (39)

Evidently, if we were to replace α̂ in section 2.1 by
∑

k α̂k , then equation (39) could be
viewed as a local version of equation (6), with �x playing the role of the index k. Imposing
the normalization conditions, and specializing henceforth to dt (�x) ≡ dt and flat spacelike
surfaces σ , we find the following local version of equation (10):

d〈Ô〉 = 〈dÔ〉 +
∫

d3 �x [〈α̂†(�x)Ô + Ôα̂(�x) + β̂†(�x)Ôβ̂(�x)〉] dt

+
∫

d3 �x[dξ(�x)〈Ôβ̂(�x)〉 + dξ ∗(�x)〈β̂†(�x)Ô〉]
dV [Ô] = 〈�Ô dÔ + dÔ�Ô〉

+
∫

d3 �x [〈α̂†(�x)(�Ô)2 + (�Ô)2α̂(�x) + β̂†(�x)(�Ô)2β̂(�x)〉
−2〈β̂†(�x)�Ô〉〈�Ôβ̂(�x)〉] dt

+
∫

d3 �x [dξ(�x)〈(�Ô)2β̂(�x)〉 + dξ ∗(�x)〈β̂†(�x)(�Ô)2〉].

(40)

Instead of working with the most general form of the normalization condition, we shall
specialize (as we did in section 2.2) and satisfy equation (39) by taking α̂(�x) and β̂(�x) to have
the form

α̂(�x) = −iĤint(�x)− 1
2 β̂(�x)†β̂(�x)

β̂(�x) = �Ŝ(�x) (41)

with Ŝ(�x) any local Lorentz scalar operator that commutes with Ĥint(�x). We shall further
assume Ŝ(�x) to be self-adjoint. Additionally, we shall assume that the operator Ô is self-
adjoint and has no intrinsic time dependence in the Schrödinger picture, so that in the interaction
picture its time dependence is given by

dÔ

dt
= i[Ĥ0, Ô]. (42)

With these specializations, equation (40) can be rewritten after a little algebra as

d〈Ô〉 =
[
〈i[Ĥ , Ô] − 1

2

∫
d3 �x [Ŝ(�x), [Ŝ(�x), Ô]]〉

]
dt

+
∫

d3 �x [dξ(�x)〈Ô�Ŝ(�x)〉 + dξ ∗(�x)〈�Ŝ(�x)Ô〉]

dV [Ô] =
[〈

i[Ĥ , (�Ô)2] − 1
2

∫
d3 �x [Ŝ(�x), [Ŝ(�x), (�Ô)2]]

〉

−2
∫

d3 �x |〈�Ô�Ŝ(�x)〉|2
]

dt

+
∫

d3 �x [dξ(�x)〈(�Ô)2�Ŝ(�x)〉 + dξ ∗(�x)〈�Ŝ(�x)(�Ô)2〉].

(43)

Although not needed for our purposes, by using the fact that d3 �x dt and Ŝ(�x) are Lorentz
scalars, the stochastic and drift terms in equation (43) can be readily written in a manifestly
covariant form. The corresponding covariant transcription of the Hamiltonian evolution terms
is given in Matthews [27] and Kroll [28].
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3.3. Reduction for local density eigenstates

Let us now apply the above formulae to discuss state vector reduction to local density
eigenstates, giving a relativistic generalization of the localization models discussed in [3–5].
Let us make the specific choice

Ŝ(�x) = CĤint(�x) (44)

which obviously satisfies the commutativity conditions

[α̂(�x), α̂(�y)] = [α̂(�x), β̂(�y)] = [β̂(�x), β̂(�y)] = [α̂(�x), Ĥint(�y)] = [β̂(�x), Ĥint(�y)] = 0 (45)

for all spacelike separated points �x, �y. In field theories like the standard model, in which all
mass comes from spontaneous symmetry breaking, the mass terms arise from Ĥint(�x), and so
for bulk matter we are effectively taking Ŝ to be the local mass density operator, multiplied by
a scale factor C.

As a concrete illustration of how equation (43) can lead to state vector reduction and
localization, let us consider the simplified case of an apparatus connected to a pointer with two

macroscopic states specified by two values �X1 and �X2 of the pointer centre of mass variable �̂X,

�̂X ≡
∫

pointer d3 �x �xŜ(�x)∫
pointer d3 �x Ŝ(�x) . (46)

We shall apply equation (43) to this system, taking Ô = �̂X. By equation (45), the double
commutators [Ŝ(�x), [Ŝ(�x), Ô]] and [Ŝ(�x), [Ŝ(�x), (�Ô)2]] both vanish, but in general the
commutators [Ĥ , Ô] and [Ĥ , (�Ô)2] are nonzero. However, if we take the two macroscopic
pointer positions to be degenerate in energy, then the commutators involving Ĥ vanish within
the degenerate two-state subspace. Taking the stochastic meanM[ ] of equations (43), we then
find within the two-state subspace the simplified equations

M[d〈 �̂X〉] = 0

M[dV [ �̂X]] = −2
∫

d3 �x M[|〈� �̂X�Ŝ(�x)〉|2] dt.
(47)

Here we have exactly the same structure as we found in equation (19) above, and the function

f ( �̂X) ≡ ∫
d3 �x|〈� �̂X�Ŝ(�x)〉|2 is easily seen (cf the final line in equation (48) below) to obey

the condition that the vanishing of f ( �̂X) implies the vanishing of 〈(� �̂X)2〉. Hence the same
argument as was used in equations (23) and (24) proves that an initial superposition of the two

centre of mass eigenstates reduces to either the state with �̂X = �X1 or the state with �̂X = �X2,
with respective probabilities given by the amplitude squared to find the initial state in the

respective �̂X eigenstate.
From equation (47), we can estimate the reduction rate + as follows. Writing |ψ〉 =

| �X1〉 cos θ + | �X2〉 sin θ , and assuming that the states | �X1〉, | �X2〉 differ sufficiently for us to
approximate that 〈 �X1|Ŝ(�x)| �X2〉 � 0, we have after a short calculation

V [ �̂X] = 〈(� �̂X)2〉 = sin2 θ cos2 θ( �X1 − �X2)
2

〈� �̂X�Ŝ(�x)〉 = sin2 θ cos2 θ( �X1 − �X2)(〈 �X1|Ŝ(�x)| �X1〉 − 〈 �X2|Ŝ(�x)| �X2〉)
|〈� �̂X�Ŝ(�x)〉|2 = sin4 θ cos4 θ( �X1 − �X2)

2|〈 �X1|Ŝ(�x)| �X1〉 − 〈 �X2|Ŝ(�x)| �X2〉|2

= 〈(� �̂X)2〉
2 |〈 �X1|Ŝ(�x)| �X1〉 − 〈 �X2|Ŝ(�x)| �X2〉|2

( �X1 − �X2)2
.

(48)
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Thus equation (47) becomes

M[d(sin2 θ cos2 θ)]

dt
= −2

∫
d3 �x M[sin4 θ cos4 θ ]|〈 �X1|Ŝ(�x)| �X1〉 − 〈 �X2|Ŝ(�x)| �X2〉|2 (49)

from which we see that, up to numerical factors of order unity, the reduction rate is given by

+ ∼
∫

d3 �x |〈 �X1|Ŝ(�x)| �X1〉 − 〈 �X2|Ŝ(�x)| �X2〉|2

∼ C2
∫

pointer
d3 �x [ mass density]2. (50)

For a pointer containingN ∼ 1023 nucleons of massM ∼ 1 GeV and volume V ∼ 10−39 cm3,
the estimate of equation (50) becomes

+ ∼ C2NM2V −1 (51)

which gives a reduction rate + > 108 s−1 (corresponding to a collapse time faster than
characteristic observational timescales) for C > (109 GeV)−2. This corresponds to a mass
scale at roughly the geometric mean between the Planck mass and a nucleon mass. Thus, in
contrast to the energy driven model [7,12,18] for state vector reduction, where the mass scale
for the coefficient of the noise terms is Planckian, in the local version discussed here the mass
scale for the noise terms is much below the Planck scale, but still large compared to elementary
particle masses.

3.4. Energy nonconservation

Except for the special case of stochastic equations in which the Lindblads are taken to be
operators that commute with the Hamiltonian (including the Hamiltonian itself), stochastic
modifications of the Schrödinger equation lead to energy nonconservation, as has been noted
in the papers of Ghirardi et al [3] and of Pearle [1,19]. Let us examine this issue in the context
of the relativistic model discussed above. For any operator Ô, the stochastic expectation M[ ]
of the first formula in equation (43) is

M[d〈Ô〉] = M

[〈
i[Ĥ , Ô] − 1

2

∫
d3 �x [Ŝ(�x), [Ŝ(�x), Ô]]

〉]
dt (52)

which when applied to the Hamiltonian (i.e. taking Ô = Ĥ ) gives for the mean rate of energy
nonconservation

M

[
d〈Ĥ 〉

dt

]
= −1

2

∫
d3 �x M[〈[Ŝ(�x), [Ŝ(�x), Ĥ ]]〉]. (53)

In typical field theory models, the double commutator appearing in equation (53) is not
only nonzero, but as first noted by Pearle [19] is proportional to δ3(�0) and thus is infinite. For
example, taking a Dirac field model with

Ĥ =
∫

d3 �x ψ̂†(�x)[i−1 �α · �∇ + βφ(�x)]ψ̂(�x) = Ĥ0 + Ĥint (54)

with φ(�x) an external scalar field with nonzero vacuum expectation, and choosing

Ŝ(�x) = CĤint(�x) = Cψ̂†(�x)βφ(�x)ψ̂(�x) (55)

one has

[Ŝ(�x), [Ŝ(�x), Ĥ ]] = δ3(�0)C2φ2(�x)i−1[ψ̂†(�x)�α · �∇ψ̂(�x)− �∇ψ̂†(�x) · �αψ̂(�x)]. (56)
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Similar results are found in scalar meson field theory models, and appear to be generic.
Moreover, except for special choices of Ŝ(�x) (see, e.g., [19–21]), the coefficient of δ3(�0)
is a nontrivial operator and not a constant. The δ3(�0) singularity is a direct result of the local
derivative structure of the drift term, and we have not found a mechanism to cancel it within
the standard stochastic differential equation and quantum field theory framework discussed
here.

4. Conclusions

We have presented two generalizations of stochastic Schrödinger equations for state vector
collapse. First, we have shown that there is an infinite parameter family of such equations for
which one can prove state vector collapse with probabilities given by the Born rule. Second,
we have given a relativistic stochastic equation which can be made manifestly covariant, and
which produces localization onto mass density eigenstates. This produces spatial localization
for superpositions of macroscopically distinct system states; to give rapid enough state vector
localization in plausible experimental setups, the scale mass governing the stochastic terms
must be considerably smaller than the Planck mass. The local equation has the defect that it
leads to a divergent rate of energy nonconservation in generic field theory models, indicating
that new ideas will be needed to achieve a satisfactory relativistic state vector collapse model.
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